Linear relations among holomorphic quadratic differentials and induced Siegel’s metric on Mg

نویسندگان

  • Marco Matone
  • Roberto Volpato
چکیده

We derive the (g − 2)(g − 3)/2 linearly independent relations among the products of pairs in a basis of holomorphic abelian differentials in the case of compact non-hyperelliptic Riemann surfaces of genus g ≥ 4. By the Kodaira-Spencer map this leads to the modular invariant metric on the moduli space induced by the Siegel metric.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

LINEAR RELATIONS AMONG HOLOMORPHIC QUADRATIC DIFFERENTIALS AND INDUCED SIEGEL’S METRIC ON Mg MARCO MATONE AND ROBERTO VOLPATO

We derive the explicit form of the (g − 2)(g − 3)/2 linearly independent relations among the products of pairs in a basis of holomorphic abelian differentials in the case of canonical curves of genus g ≥ 4. It turns out that Petri’s relations remarkably match in determinantal conditions. We explicitly express the volume form on the moduli space M̂g of canonical curves induced by the Siegel metri...

متن کامل

2 7 Ju n 20 05 Linear relations among holomorphic quadratic differentials and induced Siegel ’ s metric

We derive the (g − 2)(g − 3)/2 linearly independent relations among the products of pairs in a basis of holomorphic abelian differentials in the case of compact non-hyperelliptic Riemann surfaces of genus g ≥ 4. By the Kodaira-Spencer map this leads to the modular invariant metric on the moduli space induced by the Siegel metric.

متن کامل

The Singular Locus of the Theta Divisor and Quadrics through a Canonical Curve

A section K on a genus g canonical curve C is identified as the key tool to prove new results on the geometry of the singular locus Θ s of the theta divisor. The K divisor is characterized by the condition of linear dependence of a set of quadrics containing C and naturally associated to a degree g effective divisor on C. K counts the number of intersections of special varieties on the Jacobian...

متن کامل

An Isometry Theorem for Quadratic Differentials on Riemann Surfaces of Finite Genus

Assume both X and Y are Riemann surfaces which are subsets of compact Riemann surfaces X1 and Y1, respectively, and that the set X1 −X has infinitely many points. We show that the only surjective complex linear isometries between the spaces of integrable holomorphic quadratic differentials on X and Y are the ones induced by conformal homeomorphisms and complex constants of modulus 1. It follows...

متن کامل

asymptotics of the Teichmüller harmonic map flow

The Teichmüller harmonic map flow, introduced in [9], evolves both a map from a closed Riemann surface to an arbitrary compact Riemannian manifold, and a constant curvature metric on the domain, in order to reduce its harmonic map energy as quickly as possible. In this paper, we develop the geometric analysis of holomorphic quadratic differentials in order to explain what happens in the case th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008